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Abstract

A recursive algorithm for computing the generalised frequency response functions (GFRFs) of nonlinear time delay

systems described by nonlinear differential-difference equation models is derived using the operator �n and used to analyse

the effects of time delay in nonlinear systems. The algorithm shows an explicit relationship between the model parameters

and the GFRFs. Such a relationship provides important insight into the behaviour of nonlinear systems. The effect of

delay on several properties of nonlinear systems such as harmonic generation, gain compression/expansion and

desensitisation is studied by considering the example of a Duffing oscillator with retarded damping. Results of

the studies convincingly demonstrate that the system delay has a significant effect on several important properties of

nonlinear systems.

r 2005 Elsevier Ltd. All rights reserved.
1. Introduction

Identification of nonlinear systems using the Volterra and Wiener kernels have received considerable
attention in the past several years [1–6]. Based on the Volterra theory, the nonlinear system is characterised
either by the Volterra kernels in the time domain or equivalently by the transformation of the Volterra kernel
into the frequency domain that is called generalised frequency response functions (GFRFs).

The GFRFs can be computed directly from the input–output data [7–9]. An alternative approach is to
estimate a parametric model of the system and subsequently derive the GFRFs from this model using
harmonic probing techniques [10–14].

Although all these techniques and approaches have been applied to map systems modelled by either
differential equations or NARX models [15], the frequency response functions (FRFs) of nonlinear time delay
systems have not received much attention in the last several years except for preliminary analysis of linear time
delay systems in the frequency domain [16]. But many physical systems in the field of aeronautics, bioscience,
ee front matter r 2005 Elsevier Ltd. All rights reserved.
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chemical process control, economics, feed back control, distributed computing, etc. [17–26] are governed by
differential equations with retarded arguments, i.e. functional differential equations or differential difference
equations, and are called time delay systems. A wide class of complicated systems like the distributed
parameter system and those governed by parabolic or hyperbolic differential equations can reasonably be
modelled by differential equations with distributed time delays. Examples from applications in which delays
are important have been discussed in Ref. [27] from the perspective of optimal control.

Systems described by retarded differential-difference equations are essentially a class of infinite-dimensional
systems and their analysis is computationally much involved. Although some advances have been made in
understanding the relations between infinite-dimensional dynamical systems and finite-dimensional ones [28],
understanding the physical behaviour of these systems in the time domain is not without difficulties. It is
therefore necessary to analyse these systems in the frequency domain to exploit the obvious advantages of such
a domain.

The purpose of the present study is three fold: (i) to derive expressions for the GFRFs for a class of
nonlinear time delay systems described by nonlinear differential-difference equations using the operator �n

introduced by Zhang et al. [13], (ii) to show the effects of different types of nonlinear terms, e.g. pure input,
pure output and input–output cross-product terms on GFRFs and (iii) to investigate the effects of delay on the
nonlinear phenomena of harmonics, gain compression and expansion and desensitisation.

The organisation of the paper proceeds as follows: Section 2 briefly reviews the Volterra modelling of
nonlinear systems and explains the concept of computing GFRF for a nonlinear system by considering an
example of a nonlinear delay system. The general form of nonlinear differential-difference equation models is
presented in Section 3 and a relationship that maps the parameters of these models directly into the GFRFs is
derived. In Section 4, the effects of delay on harmonic generation, gain compression/expansion and
desensitisation has been illustrated with the example of a nonlinear Duffing oscillator with retarded damping
with conclusions in Section 5.
2. Background

In this section, a brief review of the background material necessary to understand the results of the paper is
given.
2.1. Volterra modelling of single-input single-output (SISO) systems

Consider a nonlinear system whose output can be described as

yðtÞ ¼
XNl

n¼1

ynðtÞ, (1)

where Nl is the maximum degree of nonlinearity, and ynðtÞ, the nth-order output of the system, is given by

ynðtÞ ¼

Z 1
�1

� � �

Z 1
�1

hnðt1; . . . ; tnÞdt1; . . . ; dtn

Yn

i¼1

uðt� tiÞdti; n40, (2)

where hnðt1; . . . ; tnÞ is the nth-order Volterra kernel [29]. Volterra generalised the linear convolution concept to
deal with nonlinear systems by replacing the single impulse response with a series of multidimensional
integration kernels. The nth-order Volterra kernel describes nonlinear interactions among n copies of the
input. The multidimensional Fourier transform of the nth-order Volterra kernel gives the nth-order transfer
function or GFRF

Hnð jo1; . . . ; jonÞ ¼

Z 1
�1

� � �

Z 1
�1

hnðt1; . . . ; tnÞe
�jðo1t1þ���þontnÞ dt1; . . . ;dtn. (3)

The nth-order kernel and the kernel transform are not necessarily unique because an interchange of arguments
in hnðt1; . . . ; tnÞ may give different kernels without affecting the input–output relationships. To ensure that the
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GFRFs are unique, these are symmetrised to give

Hsym
n ð jo1; . . . ; jonÞ ¼

1

n!

X
all permutations

o1 ;...;on

Hnð jo1; . . . ; jonÞ. (4)
2.2. Computation of GFRF for SISO systems

The computation of the GFRFs from the parametric model of the system has been reported by Billings and
co-workers in the past [11,12,30]. The procedure to extract nth-order GFRF introducing an extraction
operator �n have been derived for SISO nonlinear systems by Zhang et al. [13] and for nonlinear MIMO
systems by Swain and Billings [14], Worden et al. [31]. This will be used in the derivation of GFRF for time
delay systems. The reader should be aware that in Ref. [30, Section 8, p. 876], an expression for GFRF of time
delay nonlinear systems is given; however, it is appropriate to mention that the present study derives the FRFs
for time delay nonlinear systems using the operator �n.

For the better understanding of the work, the operator �n is now briefly commented. Before deriving the
expressions for the GFRF, it is appropriate to highlight the assumptions involved in the derivation. Note that
the GFRFs are related to the Volterra kernels by multidimensional Fourier transforms. Volterra series is an
infinite series and its convergence over all ranges of input excitation has been a measure concern. Some of
the early and recent results have partially established bounds on the radius of convergence [32–34]. For the
systems under study, it is assumed that the Volterra series converges over the range of input excitations of
interest. Further it is assumed that all the systems considered in the present study can be represented by the
Volterra series. Palm and Poggio [35] have derived the necessary and sufficient conditions for the existence of
the Volterra series for a given class of systems. Their results essentially show that for any system where the
nonlinearity is analytic (e.g. the polynomial-type nonlinearity), or where the nonlinearity can be approximated
with an arbitrary accuracy by polynomial systems by the Stone and Weierstrass theorem [36] can be
represented by Volterra series. Since the present study consider systems described by nonlinear differential
equations where the nature of the nonlinearity is polynomial, it satisfies the conditions postulated by Palm and
Poggio [35]. Note that introduction of delay in the output or the input of the differential equation does not
affect the analytic property of the system.

Consider a system where a parametric model is assumed to exist and is represented as

Mðt; y; y; uÞ ¼ 0, (5)

where Mð�Þ is a functional of the input u, output y and y is a set of model parameters. As y in Eq. (5) can be
expressed in terms of H and u, this can be written as

Mðt; y;H; uÞ ¼ 0. (6)

Computation of Hð�Þ by manipulating Eq. (6) for arbitrary inputs often produces complicated integral
equations. However, the harmonic probing technique [10,11] can be used to compute H from Eq. (5). This
involves applying an input consisting of R complex exponentials of frequency os defined as

uðtÞ ¼
XR

s¼1

ejost. (7)

The spectrum of the input is

Uð joÞ ¼
XR

s¼1

2pdð jo� josÞ, (8)

where d is the so-called Dirac delta-function.
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The output of the system under the harmonic excitation of Eq. (7) becomes [13]

yðtÞ ¼
XNl

n¼1

X
½all perm: of R freq:
taken n at a time�

X
½all perm: of
os1 ;...;osn �

Hnð jos1 ; . . . ; josn
Þe jð os1þ���þosn Þt. (9)

To find the nth-order GFRF, Hnð�Þ, it is convenient to consider the special case R ¼ n, so that there is only one
non-repetitive combination of frequencies fo1; . . . ;ong among all the possibilities.

Substituting Eqs. (9) and (7) into Eq. (6) yields the following equation:

Mðt; y;H ;osÞ ¼ 0, (10)

where os includes the frequencies fo1; . . . ;oRg. To compute Hnð�Þ, R is made equal to n:Mð�Þ will contain
many exponential terms but we are only interested in the term with non-repetitive frequencies e jð o1þ���þonÞt.

For a given expression, the operator �n½�� for SISO systems involves the execution of the following steps:
(i)
 Substitute the harmonic input of Eq. (7) and corresponding Volterra expansion of the output (Eq. (9))
into the given expression.
(ii)
 Express the output yðtÞ as a function of H and os.

(iii)
 Extract the coefficient of e jð o1þo2þ���onÞt from the resulting expression.
Before deriving the general expression for GFRF of an nth-order nonlinear time delay system, computation of
GFRF using harmonic probing technique is illustrated through an example.

Example 1. Consider a nonlinear system with retarded damping described as follows [37]:

€yðtÞ þ a1 _yðt� T1Þ þ a2yðtÞ þ c1 _y
2ðt� T2Þ ¼ b1uðtÞ. (11)

To compute H1ð jo1Þ, the one-tone input ejo1t is applied. The output is given by

yðtÞ ¼ H1ð jo1Þe
jo1t; uðtÞ ¼ e jo1t. (12)

By substituting the values of yðtÞ and uðtÞ in Eq. (11) and comparing the coefficients of e jo1t we get

½ð jo1Þ
2
þ a1ð jo1Þe

�jo1T1 þ a2�H1ð jo1Þ ¼ b1.

Thus

H1ð jo1Þ ¼
b1

ð jo1Þ
2
þ a1ð jo1Þe�jo1T1 þ a2

. (13)

To compute H2ðjo1; jo2Þ, a two-tone input

uðtÞ ¼ e jo1t þ e jo2t (14)

is applied to the system to give the output

yðtÞ ¼ H1ð jo1Þe
jo1t þH1ð jo2Þe

jo2t þ 2!Hsym
2 ð jo1; jo2Þe

jðo1þo2Þt

þ terms of repetitious combinations of frequencies. ð15Þ

Now by substituting the values of yðtÞ and uðtÞ in Eq. (11) and extracting the coefficients of ejðo1þo2Þt we get

½ð jo1 þ jo2Þ
2
þ a1ð jo1 þ jo2Þe

�jðo1þo2ÞT1 þ a2�2!H
sym
2 ð jo1; jo2Þ

¼ �c1½ð jo1ÞH1ð jo1Þe
� jo1T2ð jo2ÞH1ð jo2Þe

�jo2T2 � � c1ð jo2ÞH1ð jo2Þe
�jo2T2ð jo1ÞH1ð jo1Þe

�jo1T2 . ð16Þ

From Eq. (16) H
sym
2 ð�Þ can easily be derived.
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3. Generalised frequency response functions for delay differential equation models for nonlinear time delay

systems

A wide class of nonlinear time delay system can be described by the nonlinear delay differential equation of
the form

XNl

n¼1

Xn

p¼0

XL

l1;lpþq¼0

cpqðl1; . . . ; lpþq : Tl1 ; . . . ;Tlpþq
Þ
Yp

i¼1

Dli yðt� Tli
Þ
Ypþq

i¼pþ1

Dli uðt� Tli
Þ ¼ 0, (17)

where pþ q ¼ n and the operator Dli is defined as

Dli xðtÞ ¼
dli

dtli
. (18)

L is the order of maximum differential. The parameter cp;qðl1; . . . ; lpþq : Tl1 ; . . . ;Tlpþq
Þ is associated with the

term of the form
Qp

i¼1 Dli yðt� Tli
Þ
Qpþq

i¼pþ1 Dli uðt� Tli
Þ. Tl1 ; . . . ;Tlpþq

are delays of the input–outputs. Note
that the notations used in the present representation are similar to those used in Refs. [30,38].

Example 2. As an example the delay differential equation

€yðt� 0:5Þ þ 3 _yðt� 0:1Þ þ 4:2yðt� 0:3Þ þ 3:2 _yðt� 2Þy2ðt� 5Þ

þ 5:1yðt� 0:6Þ _uðt� 0:7Þ þ _uðt� 0:1Þuðt� 0:7Þ ¼ 0 ð19Þ

would be represented in the above form as

c10ð2 : 0:5Þ ¼ 1:0,

c10ð1 : 0:1Þ ¼ 3:0,

c10ð0 : 0:3Þ ¼ 4:2,

c30ð1; 0; 0 : 2; 5; 5Þ ¼ 3:2,

c11ð0; 1 : 0:6; 0:7Þ ¼ 5:1,

c02ð1; 2 : 0:1; 0:7Þ ¼ 1:0.

It can be noticed that model (17), and consequently, model (19) consist of various terms that can be divided
into three types: pure inputs, pure outputs and input–output cross-product terms. Although applying the
extraction operator �n to the system of Eq. (17) will yield an algebraic equation whose solution gives the
GFRFs, it will be physically more appealing if the contribution of each type of nonlinearity on the GFRF can
be explicitly expressed independent of other nonlinear terms. These will be described in the following remarks.

Remark 1. Pure input nonlinear terms.

While computing Hnðjo1; . . . ; jonÞ, the effect of applying �n operator to a pure input nonlinear term denoted
as ½UN � is given by

�n½U
N � ¼

X
all permutations of

o1 ;...;on

ð jo1Þ
l1 � � � ð jonÞ

lne�jð o1Tl1
þ���þonTln Þ for n ¼ N

¼ 0 otherwise, ð20Þ

where ½UN � is the nth-order nonlinear terms of the input that are of the form
Qn

i¼1D
li uðt� Tli

Þ.

Remark 2. Pure output nonlinear terms.

A pure output nonlinear term of degree p will contribute to the nth-order GFRF when ppn. Applying �n

operator to the pth-order factor of pure output term denoted as ½Y P�, which are of the form
Qp

i¼1Dli yðt� Tli
Þ,
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is given by

�n½Y
p� ¼

X
all permutations of

o1 ;...;on

Hasym
np ð jo1; . . . ; jonÞ for ppn

¼ 0 for p4n, ð21Þ

where

Hasym
np ð jo1; . . . ; jonÞ ¼

Xn�pþ1

i¼1

Hið jo1; . . . ; joiÞHn�i; p�1ð joiþ1; . . . ; jonÞð jo1 þ � � � þ joiÞ
lpe�jðo1þ���þoiÞTlp (22)

denotes the contribution of the pth-order factor of nonlinear output term to the nth-order nonlinearity. This is
estimated recursively and the recursion finishes with p ¼ 1, with Hn;1ðjo1; . . . ; jonÞ having the property

Hn;1ð jo1; . . . ; jonÞ ¼ Hnð jo1; . . . ; jonÞð jo1 þ � � � þ jonÞ
l1e�jðo1þ���þonÞTl1 . (23)

Remark 3. Input–output cross-product terms.

The pth-order factor of the output Y p in conjunction with the qth-order factor of the input ½Uq� will
contribute to the nth-order GFRF provided pþ qpn. By applying the extraction operator �n to ½Y

pUq�, we get

�n½Y
pUq� ¼

Xn�1
q¼1

XL

l1;lpþq¼0

ð jon�qþ1Þ
lpþ1 ; . . . ; ð jonÞ

lpþqe
�jðon�qþ1Tlpþ1

þ���þonTlpþq Þ

�Hn�q;pð jo1; . . . ; jon�qÞ for pþ qpn

¼ 0 otherwise. ð24Þ

The terms that contribute are of the form
Qp

i¼1D
li yðt� Tli

Þ
Qpþq

i¼pþ1Dli uðt� Tli
Þ and the associated coefficient is

cpqðl1; . . . ; lpþq : ðTl1 ; . . . ;Tlpþq
Þ.

From the Remarks 1, 2 and 3, it is obvious that among all the terms present in Eq. (17) only the linear
output terms will produce a term ejðo1þ���þonÞt with Hnð jo1; . . . ; jonÞ appearing as a coefficient. All other terms
will only produce terms with lower order Hið�Þ; ion as the coefficients. Also, for the valid input–output map
to exist, it is essential that there must be at least one linear output term present in the system model. Since
applying �n operator to linear output terms produces a term with coefficient Hnð�Þ, the contribution of linear
output terms from Eq. (17) are brought to the left-hand side and all other terms are taken to the right-hand
side. Thus, the mapping of Eq. (17) gives

�
XL

l1¼0

c10ðl1; : Tl1 Þð jo1 þ � � � þ jonÞ
l1e�jð o1þ���þonÞTl1

" #
n!Hnð jo1; . . . ; jonÞ

¼
XL

l1;ln¼0

c0;nðl1; . . . ; ln : Tl1 ; . . . ;Tln
Þ�n½U

n�
Xn

p¼2

Xn

l1;lp

cp;0ðl1; . . . ; lp : Tl1 ; . . . ;Tlp
Þ�n½Y

p�

�
Xn�1
q¼1

Xn�q

p¼1

XL

l1;lpþq¼0

cp;qðl1; . . . ; lpþq : Tl1 ; . . . ;Tlp¼q
Þ�n½Y

pUq�. ð25Þ

The computation of GFRFs using the procedure described are illustrated with the following example.

Example 3. Consider a modified Vander Pol equation with retarded damping described by the equation

€yðtÞ þ 2zonð1� y2ðtÞÞ _yðt� T1Þ þ o2
nyðtÞ ¼ uðtÞ. (26)

This system when represented in the general notations introduced in Eq. (17) gives c10ð2 : 0Þ ¼ 1:0,
c01ð0 : 0Þ ¼ �1:0, c10ð1 : T1Þ ¼ 2zon, c30ð0; 0; 1 : 0; 0;T1Þ ¼ �2zon and c10ð0 : 0Þ ¼ o2

n.
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Thus, putting these values in the general expression of Eq. (25), we get

H1ð jo1Þ ¼
1:0

ð jo1Þ
2
þ 2zonð jo1Þe�jo1T1 þ o2

n

. (27)

Since this system does not possess any second-order nonlinear terms, H2ð jo1; jo2Þ is absent. The third-order
FRF is given by

½ð jo1 þ jo2 þ jo3Þ
2
þ 2zonð jo1 þ jo2 þ jo3Þe

�jðo1þo2þo3ÞT1 þ o2
n�3!H3ð jo1; jo2; jo3Þ

¼ 2zon

X
all permutations of

o1 ;...;o3

H33ð jo1; . . . ; jo3Þ

¼ 2zon

X
all permutations of

o1 ;...;o3

H1ð jo1ÞH1ð jo2ÞH1ð jo3Þð jo1Þ
1e�jo1T1 . ð28Þ

4. Analysis of nonlinear systems with delay in frequency domain

Analysis of nonlinear systems without delay in using frequency domain techniques have been carried out by
Tomlinson, Worden, Billings and co-workers [39–43]. Nonlinear systems exhibit a variety of exciting
behaviour such as generation of harmonics and inter modulation frequencies together with effects of gain

compression/expansion and desensitisation, which are not present in linear time invariant systems [11,44].
Before the effects of delay on some of these properties are illustrated by a specific example, it is appropriate to
briefly review the related theory following Wiener and Spina [44].

The frequency domain analysis begins by evaluating the output response of a nonlinear system to an input
uðtÞ composed of K sinusoids with different frequencies and phase shifts:

uðtÞ ¼
XK

i¼1

jAij cosðoitþffAiÞ ¼
XK

i¼�K
ia0

Ai

2
e joi t, (29)

where ok is the kth frequency with amplitude jAkj and phase shift ffAk. Ak is a complex number which gives
the amplitude and phase of the kth frequency with the property that A�k ¼ A�k, where A�k is the complex
conjugate of Ak. The total response of the nonlinear system can be expressed as

yðtÞ ¼
XNl

n¼1

ynðtÞ, (30)

where ynðtÞ, the nth-order output of the system is given by

ynðtÞ ¼
1

2n

XK

k1¼�K

� � �
XK

kn¼�K

ðAk1
; . . . ;Akn

Hnð jok1
; . . . ; jokn

ÞÞe jð ok1
þ���þokn Þt. (31)

Thus, the output consists of all possible combinations of the input frequencies �o�K ; . . . ;�o�1;o1; . . . ;oK

taken n-at a time. The expression for the output with a specific frequency component is derived by defining the
nth-order module or frequency mix vector of the input M ¼ ðm�K ; . . . ;m�1;m1; . . . ;mK Þ where mkX0 andPK

i¼�K mi ¼ n. mk denote the number of times the frequency f k ¼ ok=2p appear in the frequency mix. An
arbitrary frequency mix is then represented by the vector as

f M ¼
XK

i¼�K
ia0

mif i ¼
XK

i¼1

ðmi �m�iÞf i. (32)

The sum of all terms with the frequency f M in the nth-order output component ynðtÞ is given as

ynðt; f M Þ ¼
n!

2n

YK
i¼�K
ia0

Ami

i

mi!

2
4

3
5Hnðm�Kf f �Kg; . . . ;m1f f �1g;m1f f 1g; . . . ;mKf f KgÞe

j2pf M t, (33)



ARTICLE IN PRESS
A.K. Swain et al. / Journal of Sound and Vibration 294 (2006) 341–354348
where mKff Kg denotes mK consecutive arguments with the same frequency f K . Note that ynðt; f MÞ is a
complex phasor rather than a sinusoidal function and the real sinusoidal component at frequency f M can be
obtained from

~ynðt; f MÞ ¼ ynðt; f M Þ þ y�nðt; f M Þ ¼ 2Refynðt; f MÞg. (34)

4.1. Example 4: Duffing oscillator with retarded damping

The effects of delay on several properties of the nonlinear system will be studied by considering the Duffing
oscillator with retarded damping given by

€yðtÞ þ k1 _yðtÞ þ k2 _yðt� TÞ þ c1yðtÞ þ k3y
3ðtÞ ¼ buðtÞ. (35)

Models such as in Eq. (35) have been used in the study of anti-rolling stabilisation systems in ships where an
artificially produced damping term k2 _yðt� TÞ is added to systems with insufficient natural damping k1 _yðtÞ
[45]. The first- and third-order FRFs of the system are

H1ð jo1Þ ¼
b

ð jo1Þ
2
þ k1ð jo1Þ þ k2ð jo1Þe�jo1T þ c1

, ð36Þ

H3ð jo1; jo2; jo3Þ ¼
�k3H1ð jo1ÞH1ð jo2ÞH1ð jo3Þ

ð jo1 þ jo2 þ jo3Þ
2
þ ðk1 þ k2e�ð jo1þjo2þjo3ÞT Þð jo1 þ jo2 þ jo3Þ þ c1

, ð37Þ

respectively. The simulation is carried out with k1 ¼ 0:2, k2 ¼ 0:16, c1 ¼ 1:0, k3 ¼ 1 and b ¼ 1. The plot of the
first- and third-order GFRFs at different values of delay are shown in Fig. 1. From the plot of linear FRFs, it
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Fig. 1. First- and third-order frequency response functions of Duffing Oscillator with retarded damping at different values of delay T .
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is observed that the peak value of the linear gain increases with increase in the delay T , and the oscillator
become more selective with increasing T . The maximum linear gain at T ¼ 0, 1 and 2 s are 9.0158, 10.5766
and 18.3022 dB, respectively. The peak value of third-order FRFs at T ¼ 0, 1 and 2 s are 35.2485, 37.7342 and
56.2368 dB, respectively. This is expected since the higher-order FRFs depend on lower-order FRFs.

4.1.1. Effects of delay in nonlinear terms

In order to investigate the effects of the presence of delay in the nonlinear term, consider the Duffing
oscillator of Eq. (35) with delay in the nonlinear term. Without loss of generality, the delay is assumed to be
equal in both linear and nonlinear terms. Eq. (35) therefore changes to

€yðtÞ þ k1 _yðtÞ þ k2 _yðt� TÞ þ c1yðtÞ þ k3y3ðt� TÞ ¼ buðtÞ. (38)

Inclusion of the delay in nonlinear terms will not affect the first-order FRF. However, the third-order FRF
changes from Eq. (37) to

H3ð jo1; jo2; jo3Þ ¼
�k3H1ð jo1ÞH1ð jo2ÞH1ð jo3Þe

� jðo1þo2þo3ÞT

ð jo1 þ jo2 þ jo3Þ
2
þ ðk1 þ k2e�ð jo1þjo2þjo3ÞT Þð jo1 þ jo2 þ jo3Þ þ c1

. (39)

By comparing Eq. (37) with Eq. (39) it is obvious that the presence of delay in nonlinear term will not affect
the magnitude of the higher-order FRFs since the magnitude of e�jðo1þo2þo3ÞT is unity. However, this will alter
the phase response of various orders of higher-order FRF and may be analysed following the work of Zhang
and Billings [46]. However, as will be evident from subsequent sections, the effects of delay on gain
compression, desensitisation, etc. depend on the magnitude of the FRFs, and therefore the analysis of the
effects of delay will be carried out by considering the system of Eq. (35) that contains delay in the linear terms.

4.2. Effect of delay on harmonics

When the system of Eq. (30) is excited by a single frequency sinusoid of frequency f harmonics are
generated. It is possible to show that odd harmonics are, generated by odd order FRFs, and even harmonics
are, generated by all even order FRFs [11]. The output of the system with frequency lf is given by

yðt; lf Þ ¼ Re Ale j2pðlÞft
1

2l�1
Hlðlf f gÞ þ

l þ 2

2lþ1
jAj2Hlþ2ð�f ; ðl þ 1Þf f gÞ

��

þ
ðl þ 4Þðl þ 3Þ

2ðlþ4Þ
jAj4Hlþ4ð�f ;�f ; ðl þ 2Þf f gÞ þ � � �

��
. ð40Þ

The magnitude of the lth harmonic is

jElj ¼ jAj
l 1

2ðl�1Þ
Hlðlf f gÞ þ

ðl þ 2Þ

2ðlþ1Þ
jAj2Hlþ2ð�f ; ðl þ 1Þf f gÞ þ � � �

����
����. (41)

Thus, the magnitude of the lth harmonic is proportional to the lth power of the input amplitude. If the
amplitude of the input is taken to be smaller than one, then jElj will predominantly dependent on the first term
to give

jElj ’
jAjl

2l�1
jHlðlf f gÞj. (42)

In order to study the effect of delay on the harmonic generation, the Duffing oscillator represented by Eq. (35)
was excited by the input

uðtÞ ¼ A cos 2pft; where A ¼ 0:1 and f ¼ 0:1. (43)

The magnitudes of the third harmonic at different values of delay T are normalised by dividing these with jEl j

evaluated at T ¼ 0. The normalised amplitude of the lth harmonic

jEljðNormalisedÞ ¼
jElj

jEl jat T¼0

. (44)
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From the plot it is observed that the amplitude of the third harmonic due to the sinusoidal excitation of
frequency 0.1Hz gradually decrease with increase in delay. Note that the magnitude of the lth harmonic is
dependent on the magnitude of lth-order FRF Hlð�Þ evaluated along the line f 1 ¼ f 2 ¼ � � � ¼ f l .
Therefore, the magnitude of Hlð�Þ at the excitation frequency essentially determines the amplitude of lth
harmonic (Fig. 2).

4.3. Effect of delay on gain compression/expansion

The gain of a nonlinear system usually depends on the amplitude of the input signal. The output increases
linearly with the input amplitude up to a certain point as would be the case in a linear system, and then fails to
follow a linear relationship. The linear relationship between the output amplitude and input holds good for a
limited range of input amplitude. The effect of delay on the gain compression/ expansion is studied by exciting
the system with a single sinusoid of frequency f and amplitude jAj. The output of the system at the
fundamental frequency is given by [11,39,47,48].

yðt; f Þ ¼ RefAe j2pft½H1ð f Þ þ
3
4
jAj2H3ð�f ; f ; f Þ þ 5

8
jAj4H5ð�f ;�f ; f ; f ; f Þ þ � � ��g. (45)

The gain of the system at the fundamental frequency f is defined by the describing function NðA; f Þ given as

jNðA; f Þj ¼ jH1ð f Þ þ
3
4
jAj2H3ð�f ; f ; f Þ þ 5

8
H5ð�f ;�f ; f ; f ; f Þ þ � � � j. (46)

In case of linear systems, all the higher-order FRFs above order 1 are zero, and the gain function jNðA; f Þj is
independent of the input amplitude and equal to the linear FRF evaluated at frequency f . However, nonlinear
systems exhibit a behaviour that differs increasingly from the linear systems as the input amplitude and the
magnitude of the higher-order GFRFs change. If the nonlinear effects above third order are negligible, then
the input–output relation can approximately be expressed as

y ¼ H1ð f Þ þ
3

4
A2H3ð�f ; f ; f Þ

����
����

� jH1ð f Þj 1þ
3

4
A2 H3ð�f ; f ; f Þ

H1ðf Þ

����
����|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}A. ð47Þ
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The factor in underbrace in Eq. (47) represents the gain compression or expansion of the nonlinear systems
with respect to the first-order FRF H1ð f Þ. Since the delay in the output affects the magnitude of all the
FRFs, it is obvious that the delay will have significant effect on the gain compression/expansion phenomena.
In order to study this phenomena, the system of Eq. (35) excited by a sinusoid of frequency 1Hz.
The variations of output amplitudes with input amplitude are shown in Fig. 3 for different values of delay T .
From the figure it is observed that the system’s behaviour departs from the linear one as the amplitude is
increased with gain compression for small input amplitudes and gain expansion for medium and high input
amplitudes. Moreover, for the choice of the parameter in the simulation, the delay has less effect at low ranges
of the input amplitude. The effect of delay has been significant in medium and high ranges of input
amplitudes.

4.4. Effect of delay on desensitisation

For a linear system, the sinusoidal response at a frequency f 1 is unaffected by exciting the system with
another frequency f 2. However, for a nonlinear system, the response at a given frequency f 1 is affected by the
application of another sinusoid of different frequency f 2. This phenomenon is called desensitisation [44] and is
studied in this section by exciting the Duffing oscillator with the input

uðtÞ ¼ jA1j cosð2pf 1tþ ffA1Þ þ jA2j cosð2pf 2tþ ffA2Þ. (48)

Since the excitation consists of a two-tone input, the input frequencies to the system are �f 2;�f 1; f 1 and f 2.
The nth-order module vector of the input frequencies will take the form M ¼ ðm�2;m�1;m1;m2Þ. The output

at frequency f 1 may be expressed as

yðt; f 1Þ ¼ Ref½A1H1ðf 1Þ þ
3
4
A1jA1j

2H3ð�f 1; f 1; f 1Þ þ
3
2
A1jA2j

2H3ð�f 2; f 1; f 2Þ þ � � ��e
j2pf 1tg. (49)

Since the intention is to study the effects of delay on desensitisation, jA1j is assumed to be very much less than
jA2j to keep the effect of gain compression/expansion very small compared to the desensitisation term.
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If the nonlinear effects above third order are neglected

yðt; f 1Þ ¼ Ref½A1H1ð f 1Þ þ
3
2
A1jA2j

2H3ð�f 2; f 1; f 2Þ�e
j2pf 1tg. (50)

The amplitude of the output signal at frequency f 1 becomes

Gain½ yðt; f 1Þ� ¼ jA1H1ðf 1Þ þ
3
2
A1jA2j

2H3ð�f 2; f 1; f 2Þj. (51)

The gain of the system at frequency f 1 is given by

Sgain ¼
gainfyðt : f 1Þg

jA1j
¼ jH1ð f 1Þj 1þ

3

2
jA2j

2 H3ð�f 2; f 1; f 2Þ

H1ðf 1Þ

����
����. (52)

To study the interfering effect of the signal at frequency f 2, system (35) was excited by the input

uðtÞ ¼ A1 cos 2pf 1tþ A2 cos 2pf 2t (53)

with A1 ¼ 0:1, A2 ¼ 3:0 and f 1 ¼ 0:15Hz. The effect of delay on desensitisation was initially studied by
applying the second signal with f 2 ¼ 0:3Hz. The normalised value of the system gain at frequency f 1, which is
the ratio of system gain at frequency f 1 to the system gain at frequency f 1 with no delay, is plotted in Fig. 4(I).
The plot shows that the effect of the second signal on the gain of the system at f 1 increases with delay. Note
that Sgainð f 1Þ is a nonlinear function of the amplitude and frequency of the interfering signal. The effect of
delay on the gain can be different if frequency of the second signal changes to another value. To demonstrate
the highly nonlinear nature of Sgainð f 1Þ, the frequency of the second signal f 2 was changed from 0.3 to
0.075Hz. The variation of Sgainð f 1Þ with delay for f 2 ¼ 0:075Hz is shown in Fig. 4(II). From the figure, it is
observed that the gain decreases with delay, unlike the case when f 2 ¼ 0:3Hz.

5. Conclusions

Algebraic expressions in a recursive framework have been derived for GFRFs of nonlinear time delay
systems using the operator �n. The expressions give an important insight into the relationships between time
and frequency domain representations of the system, and can be used to extract frequency domain
information about the system. The GFRFs derived have been used to demonstrate the effects of delay on
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nonlinear phenomena of harmonics, gain compression and expansion and desensitisation by considering the
example of a nonlinear Duffing oscillator with retarded damping. Finite-dimensional discrete time models can
be reconstructed from the GFRFs of delay systems that are essentially of infinite dimensional and will be
the part of future research. Moreover, the stability of the nonlinear delay systems can be studied based on the
GFRFs.
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